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1 Introduction

In this report I will summarise the results of a number of different benchmarks performed on
the Blue Gene system at IBM Thomas J. Watson Research Center as part of the Blue Gene
“Consortium Day” on 29th March 2006.

The benchmarks represent system of the type we are currently investigating for physical prop-
erties, and so represent a fair test of the machine. Practical time constraints meant that I did not
queue any runs larger than a 1024 cubed lattice (equal in size to the largest run I am aware of in
the past) on more than 8 racks.

2 The Lattice Boltzmann Code

The code,Ludwig(named for Ludwig Boltzmann, 1844–1906), provides a numerical solution of
the Navier-Stokes equations for fluid flow via the lattice Boltzmann method [1, 2]. In common
with other numerical methods, it represents the flow domain as a discrete lattice. However, it
also uses a discrete velocity spaceci, where theci are chosen so thatci∆t = ri, whereri are
lattice vectors and∆t is the discrete time step.

The fluid is represented by a distribution functionfi, which can be thought of as the density of
fictitious fluid particles at a given position having velocityci. Physical quantities are defined in
terms of this distribution function, for example, the densityρ =

∑n
i=1 fi.

The time evolution is via a discrete Boltzmann equation, which can be thought of in two parts:
first, a local “collision” stage, where appropriate physics is introduced at each lattice site to up-
date the local distributions and second, a “propagation” stage in which each distribution moves
ci∆t, i.e., one lattice site in the appropriate direction.

The discrete velocity setci is denoted DdQn, whered is the number of dimensions andn is
the number of discrete velocities (usually 15 or 19 in three dimensions, connecting a given
lattice site to its nearest neighbours, and next-nearest neighbours). The method therefore has
a relatively high memory requirement (15 or 19 double precision state variables per lattice site
for a single phase fluid). For a binary fluid, a second distribution is introduced, doubling the
memory requirement.

The method has a number of advantages: the pressure calculation is entirely local, meaning
that parallelisation does not require anything more than halo swaps between adjacent domains
to accommodate the propagation stage; complex topological structure evolves naturally on the
lattice in the case of binary mixtures, removing the need for complex interface tracking proce-
dures. Finally, solid fluid boundary conditions for moving objects may be introduced [3] with
little loss of efficiency [4].

Computationally, the collision stage is dominated by floating point operations, while in contrast
the propagation stage has no floating point operations but is dominated by memory movement.
(Lattice Boltzmann is unlikely to win any prizes for overall Flop rate.) Colloidal particles are
based around linked list manipulation with a significant number of irregular memory accesses.
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3 Benchmarks

3.1 Description

I have run three different benchmarks:

1. T1: A binary fluid system on a512 × 1024 × 512 lattice undergoing spinodal decompo-
sition. The binary fluid model has two distributions using D3Q19.

2. T2: A single fluid system on a 1024 cubed lattice with fluctuating hydrodynamics [5].
This uses D3Q15 and the problem is large enough that it can just be accommodated on a
single rack.

3. T3: As for T2, but with the addition of colloidal particles with radius 4.77 lattice units at
25% volume fraction (579,465 particles in total).

These are realistic benchmarks which are indicative of the type of systems we are currently
interested in investigating for a number of different physical problems.

Compiler options in all cases were

-O3 -qipa -qhot -qarch=440 -qtune=440

All the benchmarks use virtual node mode and have been run on between 1 and 8 racks (i.e.,
2048 and 16384 MPI processes). Results are presented in Figure 1.

3.2 Results

The results for the smallest problemT1 are very good, scaling almost perfectly to 8 racks. This
is likely to be about the limit of scaling for this problem.

The performance of theT2 problem is slightly puzzling compared with what I expected from the
Edinburgh system. The times show a large contribution in the lattice halos, which also captures
load imbalance. It appears that the fluctuations (essentially random number generation) have
introduced some load imbalance in the problem which could be investigated further. However,
the scaling remains robust, particularly as the local domain size is reduced.

In contrast, theT3 run which is the same asT2 except for the inclusion of colloidal particles.
The inclusion of particles actually eliminates the problems associated with the lattice halos seen
in T2. The computation time required for the particles is somewhat offset by a saving in the
collision stage associated with non-fluid sites. Scalability here, although good to 8 racks, will
probably be ultimately limited by extra communication costs associated with particles.

4 Summary

The lattice Boltzmann benchmarks run on the Watson system show good scaling to 8 racks
compared with a single rack.
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Figure 1: The breakdown of the time (left) and the scaling compared to one rack (right) as a
function of the number of racks. The top panels show problemT1, the centreT2, and the bottom
T3. The bars in the breakdown for each run are, from left to right, total, collision, propagation,
lattice halos, (and in caseT3) particle construction, particle boundary conditions, and particle
halos. All the benchmarks use virtual node mode (i.e., 1 rack is 2048 MPI processes, while 8
racks is 16384 MPI processes).
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